COI Disclosures:

• Sarah Morgan: MD, RD, CCD : None

• Lawrence Jankowski CBDT: None
Course Objectives

- Describe the technology behind Dual-energy X-ray Absorptiometry (DXA) and its strengths and weaknesses as a diagnostic test: a technical quality perspective.
- Describe the three uses of DXA in the clinical setting (diagnosis, fracture risk, and monitoring changes).
- Provide clinicians techniques for determining the accuracy of DXA scans and reports before incorporating them into patient management.
- Case studies for review.
Dual-Energy X-ray Absorptiometry

Absorptiometry:
- Measurement of absorption

Dual-energy X-ray:
- Two different energy X-ray beams passed through the patient
- Equations solve for bone density and soft-tissue at each point in the image
- Results are in grams (ash-weight) of mineral per square centimeter.
Bone Densitometry by DXA

Blessing
- DXA doesn’t measure bone density
- DXA uses T-scores for diagnosis
- DXA has exceptional precision
- DXA scan interpretation seems very straightforward
- DXA uses extremely low doses of radiation

Curse
- DXA doesn’t measure bone density
- DXA uses T-scores for diagnosis
- DXA can have atrocious precision
- DXA scan interpretation seems very straightforward
- DXA uses extremely low doses of radiation
DXA Doesn’t Measure Bone Density

Blessing:

- Area BMD (g/cm²) correlates better with bone strength than volumetric BMD (g/cm³).
- A toothpick and the birch log it was made from has the exact same volumetric density.
- The BMD of the log on a DXA scanner would read manyfold higher density reflecting its inherently greater strength.
DXA Doesn’t Measure Bone Density

Curse:
- BMD is highly dependent on orientation of X-ray beam as it passes through the anatomy
- Largest source of precision error is inability to carefully reproduce patient anatomy between visits

0.387 g/cm² 0.873 g/cm²
DXA scan interpretation seems very straightforward

- T-score below -2.5 is osteoporosis.
- T-score above -1.0 is normal
- The scan printouts are the report.

How hard can this be?
DXA Uses T-scores for Diagnosis

The T-Score Dilemma

Z-scores (ALL)

Different age for each site

Discordance – PA vs. Lateral 82y female

L1-L3 BMD 0.721 g/cm² T:-2.7, Z: -0.2

L2-L3 BMD 0.491 g/cm² T:-4.2, Z: -0.3
DXA has exceptional precision?

- Blessing

![Histogram of Spine Precision Errors in Clinical Trials](chart.png)

- Curse

Unpublished data – Courtesy Tom Fuerst, PhD, Synarc
DXA uses extremely low doses of radiation

Blessing:

• Background: 5-8 μSv/day
• DXA: 1-5 μSv
• QCT: 50-60 μSv
• pQCT: 1- μSv
• QUS: none
• Maximal permissible dose is 1,000 μSv per year (general public excluding diagnostic testing or radiation therapy)*
• Lumbar Spine x-ray: 700 μSv

*Title 10, Part 20, of the Code of Federal Regulations (10 CFR Part 20), “Standards for Protection Against Radiation,”
DXA uses extremely low doses of radiation

• Curse:
 Low radiation is a limitation in obese patients
 • Poor counting statistics increases precision error
 • Fat causes artifactual increase in measured BMD

60.2” 257lb,
BMI=49.9
Uses of Bone Densitometry

- Diagnosis
- Estimate of fracture risk
- Monitor the effectiveness of therapy
WHO T-score Diagnosis Guidelines

- 1 or above – Normal bone mineral density
- 1 to >-2.5 – Low bone mass (osteopenia)
- 2.5 or below – Osteoporosis
- 2.5 or below plus fracture – Severe (established) osteoporosis

Caveats:
- Use T-scores in postmenopausal women and men ≥ age 50
- Use only Z-scores in premenopausal women and younger men
- Valid only for Spine (L1-L4), Femur neck, total hip, and 1/3 distal radius
There really is no such thing as a T-score (in statistics)

Hologic was first DXA manufacturer to use this term.
 *Technically it is a “young-normal reference z-score”
 *Units are in standard deviations

\[
T - score = \frac{BMD_{(patient)} - \bar{x}_{(peak_reference)}}{SD_{(peak_reference_population)}}
\]
Z-score

\[Z - score = \frac{BMD_{(patient)} - \bar{x}_{(age_matched_reference)}}{SD_{(peak_reference_population)}} \]

- Age-(and race and sex and even weight) matched z-score
- The unit is in standard deviations
- Used in patients prior to age of peak bone mass
Age-related Decline in BMD

• Z-scores do not change in older patients if losing bone mass at age-expected rate

• Fracture risk doubles each decade after age 60 at same BMD

T-score = -2.5
Reference Curves

- Estimates of true populations (unless the entire population is sampled)
 - Larger samples are a better estimate of the whole population
 - NHANES* is better than manufacturer databases
 - Most curves assume a normal (bell-curve) distribution – SD scores
 - In skewed curves (e.g. % body fat) percentiles are more appropriate

*National Health and Nutritional Evaluation Survey – US Census Bureau
NHANES DATABASE

- National Health and Nutrition Evaluation Survey
 - National (USA) Census Bureau conducted at 5 year offset to population census
 - Hologic DXA scanners
 - Random sample of US population (converted to other scanner brands also)

- Universal database for all men and women (and NGC) of all races for T-scores and FRAX*
Normative Data Graphs are Different

- **GE**
 - Limit lines are +/- 1 SD (68%)
 - Females assume linear periods of stable, PMP loss age 45-65

- **Hologic**
 - Limit lines are +/- 2SD (95%)
 - Loss varies continuously with age (Cubic spline smoothing)
Fracture Risk Assessment Tools

• Multifactorial assessments
• Can be used with or without DXA BMD
 • FRAX http://www.shef.ac.uk/FRAX/
 • qFracture: https://qfracture.org/index.php
The FRAX® tool has been developed to evaluate fracture risk of patients. It is based on individual patient models that integrate the risks associated with clinical risk factors as well as bone mineral density (BMD) at the femoral neck.

The FRAX® models have been developed from studying population-based cohorts from Europe, North America, Asia and Australia. In their most sophisticated form, the FRAX® tool is computer-driven and is available on this site. Several simplified paper versions, based on the number of risk factors are also available, and can be downloaded for office use.

The FRAX® algorithms give the 10-year probability of fracture. The output is a 10-year probability of hip fracture and the 10-year probability of a major osteoporotic fracture (clinical spine, forearm, hip or shoulder fracture).

Clarification

The University of Sheffield launched the FRAX tool in 2008. At that time the University hosted the World Health Organisation (WHO) Collaborating Centre for Metabolic Bone Diseases (1991-2010), and the FRAX tool is based on data generated from that centre. However, FRAX was neither developed or endorsed by WHO. Any references to the ‘WHO tool’ or to the WHO...
ISCD Best Practices Document

E. Michael Lewiecki,,* Neil Binkley, Sarah L. Morgan, Christopher R. Shuhart, Bruno Muzzi Camargos, John J. Carey, Catherine M. Gordon,
Lawrence G. Jankowski, Joon-Kiong Lee, and William D. Leslie* on behalf of the International Society for Clinical Densitometry

*New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA; 2Osteoporosis Clinical Center and Research Program, University of Wisconsin, Madison, WI, USA; 3Division of Clinical Immunology and Rheumatology, Department of Medicine, UAB Osteoporosis Prevention and Treatment Clinic, University of Alabama at Birmingham, Birmingham, AL, USA; 4Swedish Medical Group, Seattle, WA, USA; 5Rede Mater Dei de Saúde - Densimater, Belo Horizonte, Brazil; 6Galway University Hospitals, National University of Ireland, Galway, Ireland; 7Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; 8Illinois Bone and Joint Institute, LLC., Morton Grove, IL, USA; 9JK Lee Orthopaedics & Traumatology, Petaling Jaya, Malaysia; and 10University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly
Who - can use the document

• Patients seeking a qualified testing center
• Primary care physicians determining the reliability of DXA providers they refer patients to.
• Bone densitometry providers benchmarking their service for quality
• Legislators and third-party payors
• Patient advocacy groups (e.g. NOF, NOS, OSC)
Where – Can you find the document

• The ISCD offers full access to the Journal for Clinical Densitometry article to any interested party:

Who’s doing the interpretation?
ACR Definition of an Interpretation\(^1\):

- Requires “work” by a physician or equivalent (e.g. N.P.)
- Generate a “detailed” analysis of the case, including a review of:
 - Indications
 - Pertinent medical history
 - Veracity of the quantitative data (e.g. outliers)
 - Examine the underlying images for correctness
- Affix signature certifying ownership
- BMMA\(^2\) : “In order to be eligible for reimbursement... bone density scans must include an interpretation by a physician...”

1: ACR Practice Guidelines and Technical Standards –Definition of Terms
Does You DXA Provider Look at the Images?

...the following summarizes the results of our evaluation:"
Precision and Monitoring Therapy

EPIC, US Cohort, Stratum 1 Alendronate Trial

Assessing the Precision of DXA Providers

• Longitudinal Stability Femur Neck
• Rate of change
 • Spine ≥ Total hip > F. neck
• Precision errors
 • F. neck > total hip ≥ spine
Assessing Quality of DXA Providers

• Low Tech Quality Tools
• Flip chart
• A new use for your film viewer
• Hip positioning challenges
• Hip positioning solutions
Hologic Hip Quality Checklist

1. Inferior global ROI box at 1 cm below base of lesser trochanter
2. Lateral aspect of greater trochanter 1 cm lateral to edge of scan field
3. Narrowest neck anatomy = narrowest bone map with midline bisecting and right angle to imaginary chord
4. Femur neck box lat/superior corner on bone map at notch of GT
5. Ischium not in neck box, or clearly deleted by tech
6. GT line above midline
7. Global ROI identical to prior study (follow-up in adults)
8. Abduction angle and lesser trochanter identical each visit
GE Hip Quality Checklist

1. Bone edge lines accurately outline femur (esp. Gr.Troch profile and head of femur)

2. Ischium can be deleted by operator (straight lines) to satisfy #3

3. Femur neck ROI corners all in soft-tissue or deleted bone and only contain femur neck

4. Neck box crosses and includes narrowest portion

5. Wards region small and partially overlaps femur neck box*

6. Lower triangle only contains shaft (not ischium)

7. Abduction angle and lesser trochanter identical each visit

1. Equal amounts of soft-tissue area both sides of spine every visit
2. Bone map includes only spine
3. Vertebral heights roughly same and markers in disk space
4. Sacrum and clear ribs visible to insure all lumbar spine is scanned
5. Label “bottom up”
6. Hologic: box width =116, height same or slightly less with aging at follow-up
7. GE: Vertebral heights and total areas require review of an ancillary page (not shown)
FAX Friendly Reports

- Use inverted gray scale, low contrast images
- Fax using half-tone and fine resolution
- Use largest image reports
- Always send area and BMC data of all regions and sub-regions including scan mode used
 - Ancillary report on GE-Lunar and Norland
 - Filing report on Hologic with ROI box sizes
Faxing Etiquette Example

Original

Half-tone Fine Resolution Setting
Image Assessment: P.A.R.E.D.

- P - Positioning
- A - Artifacts
- R – Regions of Interest
- E – Edge Detection
- D – Databases, Demographics
2012

How to Evaluate Follow Up Scans

Line up pictures side by side to make sure levels, edge detection etc are the same

In Hologic check to make sure that the ROI size is the same
The scan will tell you the interval change in g/sq cm and % change from the previous scan and baseline – What do you do with that data?
Determining Change

- Compare the BMD between two studies (don’t compare T-scores because these depend upon normative databases)
- Know the precision error and 95% confidence intervals (least significant change) at your institution
- Subtract the BMD from the one you are comparing with and see if the value exceeds the LSC
Example of a Change Calculation

Baseline spine BMD = 0.863 gm/cm²
Repeat spine BMD = 0.860 gm/cm²
Difference = -0.003 gm/cm²

LSC = 0.040 gm/cm²
= or Exceeds LSC NO

Therefore, this is a not significant loss of bone mineral density at this site

(You can’t rely on the statistics from the machine because they are not done with a population like your population)

Performing a precision study to determine precision error and least significant change at your institution is important.
UAB POOLED PRECISION VALUES

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean BMD</th>
<th>Prec.(S D)</th>
<th>CV%</th>
<th>LSC (g/cm²)</th>
<th>LSC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hip</td>
<td>0.705</td>
<td>0.007</td>
<td>1.0</td>
<td>0.019</td>
<td>2.7</td>
</tr>
<tr>
<td>FN</td>
<td>0.577</td>
<td>0.009</td>
<td>1.6</td>
<td>0.026</td>
<td>4.5</td>
</tr>
<tr>
<td>GT</td>
<td>0.546</td>
<td>0.007</td>
<td>1.3</td>
<td>0.020</td>
<td>3.6</td>
</tr>
<tr>
<td>L1-L4</td>
<td>0.743</td>
<td>0.008</td>
<td>1.1</td>
<td>0.023</td>
<td>3.1</td>
</tr>
<tr>
<td>L1-L3</td>
<td>0.714</td>
<td>0.009</td>
<td>1.3</td>
<td>0.025</td>
<td>3.5</td>
</tr>
<tr>
<td>L2-L4</td>
<td>0.773</td>
<td>0.009</td>
<td>1.2</td>
<td>0.026</td>
<td>3.4</td>
</tr>
<tr>
<td>L1,L3-L4</td>
<td>0.748</td>
<td>0.009</td>
<td>1.3</td>
<td>0.026</td>
<td>3.5</td>
</tr>
<tr>
<td>L1-L2,L4</td>
<td>0.731</td>
<td>0.010</td>
<td>1.4</td>
<td>0.028</td>
<td>3.9</td>
</tr>
<tr>
<td>L1-L2</td>
<td>0.678</td>
<td>0.011</td>
<td>1.6</td>
<td>0.029</td>
<td>4.3</td>
</tr>
<tr>
<td>L1,L3</td>
<td>0.710</td>
<td>0.011</td>
<td>1.5</td>
<td>0.030</td>
<td>4.3</td>
</tr>
<tr>
<td>L3-L4</td>
<td>0.794</td>
<td>0.011</td>
<td>1.4</td>
<td>0.030</td>
<td>3.8</td>
</tr>
<tr>
<td>L2-L3</td>
<td>0.751</td>
<td>0.011</td>
<td>1.5</td>
<td>0.031</td>
<td>4.1</td>
</tr>
<tr>
<td>L2,L4</td>
<td>0.772</td>
<td>0.012</td>
<td>1.6</td>
<td>0.034</td>
<td>4.4</td>
</tr>
<tr>
<td>L1,L4</td>
<td>0.734</td>
<td>0.013</td>
<td>1.7</td>
<td>0.035</td>
<td>4.7</td>
</tr>
<tr>
<td>L1</td>
<td>0.628</td>
<td>0.015</td>
<td>2.4</td>
<td>0.042</td>
<td>6.6</td>
</tr>
<tr>
<td>L3</td>
<td>0.776</td>
<td>0.015</td>
<td>1.9</td>
<td>0.041</td>
<td>5.3</td>
</tr>
<tr>
<td>L2</td>
<td>0.723</td>
<td>0.015</td>
<td>2.1</td>
<td>0.042</td>
<td>5.8</td>
</tr>
<tr>
<td>L4</td>
<td>0.809</td>
<td>0.017</td>
<td>2.1</td>
<td>0.048</td>
<td>5.9</td>
</tr>
<tr>
<td>1/3 Radius</td>
<td>0.543</td>
<td>0.009</td>
<td>1.7</td>
<td>0.025</td>
<td>4.6</td>
</tr>
<tr>
<td>UD Radius</td>
<td>0.311</td>
<td>0.008</td>
<td>2.6</td>
<td>0.022</td>
<td>7.1</td>
</tr>
</tbody>
</table>

POOLED PRECISION

<table>
<thead>
<tr>
<th>POOL Value</th>
<th>Lumbar Spine</th>
<th>Femoral Neck</th>
<th>Total Hip</th>
<th>1/3 Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root mean squared S.D. (gm/cm²)</td>
<td>0.015</td>
<td>0.012</td>
<td>0.013</td>
<td>0.008</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>0.016</td>
<td>0.018</td>
<td>0.014</td>
<td>0.011</td>
</tr>
<tr>
<td>% coefficient of variation</td>
<td>1.57</td>
<td>1.76</td>
<td>1.39</td>
<td>1.15</td>
</tr>
<tr>
<td>RMS SD – LSC (gm/cm²) – 95% confidence level</td>
<td>0.040</td>
<td>0.034</td>
<td>0.035</td>
<td>0.022</td>
</tr>
<tr>
<td>% CV - 95% confidence interval</td>
<td>4.34</td>
<td>4.87</td>
<td>3.86</td>
<td>3.18</td>
</tr>
</tbody>
</table>

Pooled Precision Values

- **Total Hip**: Mean BMD 0.705, Prec.(S D) 0.007, CV% 1.0, LSC 0.019, LSC% 2.7
- **FN**: Mean BMD 0.577, Prec.(S D) 0.009, CV% 1.6, LSC 0.026, LSC% 4.5
- **GT**: Mean BMD 0.546, Prec.(S D) 0.007, CV% 1.3, LSC 0.020, LSC% 3.6
- **L1-L4**: Mean BMD 0.743, Prec.(S D) 0.008, CV% 1.1, LSC 0.023, LSC% 3.1
- **L1-L3**: Mean BMD 0.714, Prec.(S D) 0.009, CV% 1.3, LSC 0.025, LSC% 3.5
- **L2-L4**: Mean BMD 0.773, Prec.(S D) 0.009, CV% 1.2, LSC 0.026, LSC% 3.4
- **L1,L3-L4**: Mean BMD 0.748, Prec.(S D) 0.009, CV% 1.3, LSC 0.026, LSC% 3.5
- **L1-L2,L4**: Mean BMD 0.731, Prec.(S D) 0.010, CV% 1.4, LSC 0.028, LSC% 3.9
- **L1-L2**: Mean BMD 0.678, Prec.(S D) 0.011, CV% 1.6, LSC 0.029, LSC% 4.3
- **L1,L3**: Mean BMD 0.710, Prec.(S D) 0.011, CV% 1.5, LSC 0.030, LSC% 4.3
- **L3-L4**: Mean BMD 0.794, Prec.(S D) 0.011, CV% 1.4, LSC 0.030, LSC% 3.8
- **L2-L3**: Mean BMD 0.751, Prec.(S D) 0.011, CV% 1.5, LSC 0.031, LSC% 4.1
- **L2,L4**: Mean BMD 0.772, Prec.(S D) 0.012, CV% 1.6, LSC 0.034, LSC% 4.4
- **L1,L4**: Mean BMD 0.734, Prec.(S D) 0.013, CV% 1.7, LSC 0.035, LSC% 4.7
- **L1**: Mean BMD 0.628, Prec.(S D) 0.015, CV% 2.4, LSC 0.042, LSC% 6.6
- **L3**: Mean BMD 0.776, Prec.(S D) 0.015, CV% 1.9, LSC 0.041, LSC% 5.3
- **L2**: Mean BMD 0.723, Prec.(S D) 0.015, CV% 2.1, LSC 0.042, LSC% 5.8
- **L4**: Mean BMD 0.809, Prec.(S D) 0.017, CV% 2.1, LSC 0.048, LSC% 5.9
- **1/3 Radius**: Mean BMD 0.543, Prec.(S D) 0.009, CV% 1.7, LSC 0.025, LSC% 4.6
- **UD Radius**: Mean BMD 0.311, Prec.(S D) 0.008, CV% 2.6, LSC 0.022, LSC% 7.1
ARTIFACTS AND INTERESTING SCANS
Should levels be deleted because of the artifacts in the soft tissue?

The rule of thumb is that generally omit things over the vertebral bodies, and check to see if things in the soft tissue that would affect the soft tissue baseline are omitted by the software.
Black Hole Artifact – likely tantalum clips
The table below shows the results of bone mineral density (BMD) measurements at different regions of the spine. The measurements include area (cm²), bone mineral content (BMC) (g), BMD (g/cm²), T-score, percent retention (PR) (%), and Z-score (%). The table also includes a column for AM (%). The areas of interest are L1, L2, L3, L4, and the total.

<table>
<thead>
<tr>
<th>Region</th>
<th>Area (cm²)</th>
<th>BMC (g)</th>
<th>BMD (g/cm²)</th>
<th>T-score</th>
<th>PR (%)</th>
<th>Z-score</th>
<th>AM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>12.97</td>
<td>10.77</td>
<td>0.831</td>
<td>-1.4</td>
<td>84</td>
<td>-0.8</td>
<td>91</td>
</tr>
<tr>
<td>L2</td>
<td>12.96</td>
<td>12.12</td>
<td>0.935</td>
<td>-0.8</td>
<td>91</td>
<td>-0.1</td>
<td>99</td>
</tr>
<tr>
<td>L3</td>
<td>16.68</td>
<td>15.81</td>
<td>0.948</td>
<td>-1.2</td>
<td>87</td>
<td>-0.4</td>
<td>95</td>
</tr>
<tr>
<td>L4</td>
<td>16.50</td>
<td>13.27</td>
<td>0.804</td>
<td>-2.3</td>
<td>76</td>
<td>-1.5</td>
<td>83</td>
</tr>
<tr>
<td>Total</td>
<td>59.10</td>
<td>51.97</td>
<td>0.879</td>
<td>-1.5</td>
<td>84</td>
<td>-0.8</td>
<td>91</td>
</tr>
</tbody>
</table>
AAA repair stent graft
Laminectomy
Six “lumbar”

Four “lumbar”
Vertebral Segmentation

375 Patients with complete spine exams
(assumes 12 thoracic vertebra and first rib on T1)

<table>
<thead>
<tr>
<th># of Lumbar</th>
<th>Lowest Pair of Ribs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-11</td>
<td>T-12</td>
<td>L1</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.3%</td>
<td>2.1%</td>
<td>0%</td>
<td>7.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td>(8)</td>
<td>(0)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.2%</td>
<td>83.5%</td>
<td>0%</td>
<td>90.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(313)</td>
<td>(0)</td>
<td>(340)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>0.8%</td>
<td>1.1%</td>
<td>1.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(3)</td>
<td>(4)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12.5%</td>
<td>86.9%</td>
<td>1.1%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(47)</td>
<td>(324)</td>
<td>(4)</td>
<td>(375)</td>
<td></td>
</tr>
</tbody>
</table>

Acetabula Protrusio
Motion Artifact
Heterotopic Ossification
An enchondroma is a cartilage cyst found in the bone marrow. Typically, enchondroma is discovered on an X-ray scan. Enchondromas have a characteristic appearance on Magnetic Resonance Imaging (MRI) as well. They have also been reported to cause increased uptake on PET examination.

Will the presence of the enchondroma elevate BMD in the total hip?
Words of Wisdom

- Never change patient management without thorough review of images.

- “Trust, but verify”
 - Ronald Reagan