Hardware in fractures: the orthopedic issues we have with fragile bone

Susan V. Bukata, MD Chair of Orthopaedic Surgery Professor Orthopaedic Surgery UC San Diego

Disclosures

- Speaker's Bureau
 - Radius
- Consulting
 - Amgen, Radius
- Research funding
 - Hansjorg Wyss Foundation
- Board Membership
 - Orthopaedic Research Society

Problems that Haunt

- Very thin cortices
- Very little trabecular bone
- Crack propagation during fixation
- Severe osteoarthritis adjacent to a comminuted fracture
- Periprosthetic fracture

Problems that Haunt...

- Nonunions and delayed fracture healing
- Severe comminution or segmental loss at fracture sites
- Fractures in radiated bone
- Bad bone and big surgery
 - Spine
 - Joint replacements, especially revisions

So how do you think about these problems? and Why do you do those things you do?

Problems with Fracture Healing

- Older patients with a lifetime of other issues
 - Diabetes
 - Medications
 - Prior injuries
 - Radiated bone
 - Prior surgeries with hardware/joints
- Nonunions
 - Tibia
 - Femur
 - Humerus
- Trauma patients with significant soft tissue damage

Bone regeneration possible through a lifetime

- One of the few tissues constantly regenerated and repaired
 - Bone remodeling
 - Fracture healing
- Complex, well orchestrated process
- Heals without scar
 - Indistinguishable histologically from adjacent bone
 - Restoration of mechanical properties
 - Restoration of architecture

Bone regeneration possible through a lifetime

- Regenerative process can be compromised
 - Trauma
 - Infection
 - **Physical state :** Old age, Cachexia/malnutrition, ObesityBurns/Radiation
 - Medications/Habits: Steroids, NSAIDs?, Opioids?, chemotherapy agents, Cigarette Smoking

Bone changes everywhere with osteoporosis

• Trabecular bone

- Fewer
- Rod like instead of plate like
- Architectural gaps
- Cortical bone
 - Increased porosity
 - Slower periosteal bone formation
 - aging
 - Endosteal bone resorption results in thinner cortices
 - menopause

Grab on and hold tight...

- Traditional plates-screw constructs rely on friction between plate and bone
- Screw purchase and resistance to pullout are essential to maintain fracture reduction
- Failure point in osteoporotic bone often at the bone/implant interface
 - Decreased mineralized tissue per unit volume
 - Lower resistance to screw pullout

Conventional plates vs Locking plates

- Conventional plates and screws
 - friction between the thread and the bone to be stable
 - Wiggle stimulates fracture callus
- Locking plates create more rigid fixed angle construct
 - Not rely on screw purchase
 - Increased construct stiffness
 - Careful balance to prevent stress shielding and slow bone formation

Remember the principles of geriatric fracture care

- Intend for early weightbearing and full weightbearing
- Do what will return to function as quickly as possible
- Think "long" to distribute mechanical force across the entire bone
- Choose your hardware wisely

Very thin cortices

- Screws hold onto bone by contact along the threads
- Working length is the number of threads gaining contact
 - Extend working length by going bicortical

Choosing your screws wisely

Screw/Peg Options 2.0mm 2.7mm 2.7mm 2.3mm 2.7mm 2.7mm 2.3mm Smooth Locking Locking Partial Non-Non-Partial Locking Screw Screw Thread Locking Locking Thread Peg Locking Screw Screw Non-Locking Screw Screw **T7 Drive Cross-Pin** 3333333333 Locking Screw Locking Screw Non-Locking Screw Non-Locking Screw

- Diameter matters
 - Inner dicates bending strength
 - Outer dictates screw pullout strength
- Adjustments effect stiffness
 - screw pitch
 - screw shaft diameter
 - contact with far cortex

Creative combos to balance stiffness

- Far cortical lock screws
 - Promote construct stiffness
 - Allows screw flexion in a controlled range
 - Contolled toggle near the collar
 - Controlled micromotion at the near cortex helps to promote bone formation
 - 36% more callus volume
 - 54% stronger in torsion

Far cortical locking plates

Balancing strength and motion

Unicortical vs bicortical

- Working length of the screw increased with bicortical contact
 - Improves pullout strength
- Bone location matters
 - A unicortical screw in diaphysis still has better pullout strength than a bicortical screw in the metaphysis

Very little trabecular bone

- Periarticular we rely upon trabecular contact
- Linkage to the subchondral bone can be helpful
- Not possible in all fractures
- IM rod tip-to-apex distance 25 mm goal

Creating a stable construct

- High failure rate of unstable intertroch fractures (50% with DHS)
- IM rod devices provide load sharing
- Load to failure significantly greater with IM nail

Short nail vs long nail

- Long nails possible to protect the entire bone
 - Similar principle to prophylactic nailing
 - Data not robust enough to show a significant difference in diaphyseal fracture rates
- Lower blood loss with short nail
- Similar healing and hardware failure rates

Crack propagation during fixation

- Any drill hole up to 20% of the bone's diameter can weaken bone by 40%
- Never forget about hoop stress while passing implants

Challenges of metaphyseal fractures

- Stable well reduced construct is important
- Minimally invasive plating can avoid blood supply loss to bone fragments
- Consider polyaxial locking plates

Severe osteoarthritis next to a comminuted fracture

 May need to address the arthritis and the fracture at the same time

Periarticular fractures

- Consider complex arthroplasty for severe comminution
- Use stems for stability
- Judicious use of cement
- Tibial plates that extend to the rim

Hemiarthroplasty vs Total hip

- Early 2000's data suggested total hip for physiologic younger hip fractures
- Meta-analysis from end of 2019 show no difference
 - Function
 - Quality of life
 - Reoperation
- May need to think differently if known preop significant arthritic symptoms

Cement vs Press fit femoral component

- Increased risk of implant loosening in supraelderly (>age 80)
- Consider cementing for older patients and with significant osteoporosis
- Careful cementing techniques
 - Mortality and complications some increase with cement

Periprosthetic fracture

- Working around implants
- Creating new stress risers

Plating can work

Rods can work

Osteoporosis care is still essential

Proximal humerus can be challenging

- High rate of construct failure in metaphyseal fractures
- Increased stability with fixed angled locking plates
- Still close to 35% failure rate
- Arthroplasty options may be needed

Distal Radius Fractures

- Most common fragility fracture after vertebral fracture
- Volar locked plating shows better short term outcomes

Screw augmentation

• PMMA

- Interdigitates with surrounding bone and screw threads
- Concern over thermal necrosis and screw loosening
- Hydroxyapatite coating
 - Stimulate bone remodeling
 - Increase screw holding strength

Do not fear starting osteoporosis meds

Cao Y, et al., JBMR 2002 17(12): 2237-2246

Callus formation comparisons in rat femur fracture model

Denosumab

- Mouse femur fracture model
 - Increased callus volume
 - Delayed callus remodeling
 - Increased BMD in callus tissue
- Bisphosphonates show only increased BMC in callus
- No compromise in mechanical properties
- Antiresorptive meds do not stop cartilage formation that creates the callus

Remember the Importance of Vitamin D

- Required for mineralization of newly formed bone
- Up to 60 % trauma patients Vitamin D deficient
- Treatment with Vitamin D can lead to union in cases of severe deficiency

PTH and fracture healing applications?

- Anabolic therapy for osteoporosis
- Stimulates mesenchymal stem cell recruitment and osteoblastic differentiation
- Stimulates VEGF expression
- Works through signals similar to PGE2

Effect of PTH on Fracture Healing in Aged Mice

PTH Increases Callus Volume in Aged Fractures

1-34 PTH dose of 10 mcg/kg/day

PTH and fracture healing: wrist fractures

- Aspenberg P, et al (JBMR 2010; 25(2))
 - 102 postmenopausal women treated nonoperatively
 - 3 groups (control, 20mcg/day, 40 mcg/day)
 - Placebo controlled, double blinded, randomized
 - Time to bridging 3 or 4 cortices
 - No difference in 40mcg and control group
 - Improved in 20mcg group compared to control (p=.006)
 - Study powered for the 40 mcg group
- Aspenberg P, et al (Acta Orthop 2010; 81(2))
 - Early callus formation improved with treatment of distal radius fracture with PTH

PTH and pelvis fractures

- 1-84 PTH IOO mcg daily start day 2 after fracture
- 21 treated patients, 44 control
- By 8 weeks all PTH patients healed, only 4 of control
 - Also improved pain and return to function with PTH
 - Not a randomized or blinded trial for physician or patient

So what do I do?

- Evaluate patients for overall bone health
- Evaluate prior medication history, fracture history, extent of surgery, possible risks with hardware failure
- Optimize Vitamin D
- Consider preoperative anabolic agent
 - May not be covered by insurance
 - Recommend 2 months of use preop (previously had done 6, not noticing any difference with shorter course)
 - Continue anabolic for the full course or at least until fusion healed

Thank you